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Geometry De�nitions: di�erent points of view

Complex analytic description

De�nition
The moduli space of curves of genus 0 with n marked points M0,n is the set of
Riemann spheres with n marked points modulo isomorphisms of Riemann surfaces
(analytic structure) sending marked points to marked points.

Remark
In the genus g case, the de�nition is the same but for Riemann sphere which is
replaced by Riemann surfaces of genus g .

We can see that the moduli space of curves of genus 0 with n + 3 marked points
is isomorphic to

M0,n+3 = {(z0, . . . , zn+2) ∈ P1(C) such that zi 6= zj}/PSL2(C).
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Geometry De�nitions: di�erent points of view

Examples

As PSL2(C) is three transitive we can choose as representatives (modulo the
action of PSL2(C)) the tuples (0, t1, t2, . . . , tn, 1,∞) setting

ti =
zi − z0
zi − zn+2

zn+1 − zn+2

zn+1 − z0
.

This lead to the following identi�cations:

Example

When n = 1 we have:
M0,4 ' P1(C) \ {0, 1,∞}.
When n = 2 we have:

M0,5 ' (P1(C)\{0, 1,∞})2\{t1 6= t2}.

0

0

1

1

Figure: M0,5 in P1(C)2

Remark
The previous identi�cations are depending on the choice of the cross-ratio,
however

M0,n+3 ' (P1(C) \ {0, 1,∞})n \ {fat diagonal}.
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Geometry De�nitions: di�erent points of view

Metric description

A Riemann sphere with n (n > 3) removed points is an hyperbolic surface.

M0,n can be seen as all the possible hyperbolic metrics on that Riemann sphere
without n points modulo isomorphisms (isometries respecting the marked points).

De�nition
A pant cut of an hyperbolic surface (genus 0) is the data of n − 3 simple loops
(that do not intersect) such that cutting along the loop leads to have pants.

The length of the loop of a pant cut is a geodesic of the metric and therefor an
important element to characterize it.
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Geometry De�nitions: di�erent points of view

Compacti�cation

The open space M0,n can be compacti�ed in a meaningful way. Let M0,n denote
this compacti�cation. The space M0,n classi�es the stable curves of genus 0.

Analytic point of view :

In the genus 0 case, a point in a codimension 1 component of ∂M0,n is two
spheres glue together, the n marked points being spread on the two spheres
(the double points excluded) in such a way that, there are at least 2 marked
points on each sphere.

A point in a codimension k component will be k spheres glued together the
marked points being spread on the sphere.

The gluing points together with the marked one are called special points.
The marked points are spread on the k sphere such that each sphere have at
least 3 special points.
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Geometry De�nitions: di�erent points of view

Compacti�cation

Metric-codimension 1 stratum
When a point is moving toward the boundary of M0,n the length of one of the
loop of the �pant cut� tends to 0.
The stratum is uniquely determined by the choice of that loop.
A codimension k component is de�ned by the vanishing of the length of k loops
of a �pant cut�.

Algebraic description

Proposition (P. Deligne and D. Mumford ([DM69]))
The space M0,n is scheme over Z. It is irreducible and its boundary is a normal
crossing divisor.

() Gemometry of M0,n 7 / 38



Geometry Interior and boundary

Combinatorial description of the boundary of M0,n

Strati�cation
A description of the boundary of M0,n is:

The irreducible component of ∂M0,n is the product of some M0,k for k 6 n.

Components of codimension 1 are of the the type M0,k ×M0,n−k−1.

A codimension k component is the intersection of k component of
codimension 1.

Espace de modules de courbes, groupes modulaires et thÃ c©orie des champs,
Panorama et SynthÃ�se, no. 7, SMF, 1999.
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Geometry Interior and boundary

Strata of codimension 1

Moving in a codimensin 1 stratum makes move the marked points but they
stay on the same sphere.
We have then an unordered partition σ1|σ2 of the marked points {z1, . . . , zn}.
In the metric description of M0,n: the stratum is determined by a loop
around the points in σ1 (or σ2).

Each codimension 1 stratum is uniquely determined by the corresponding
unordered partition.
We represent each of these strata by a stable partition σ1|σ2 of {z1, . . . , zn}.
For example in M0,4 the partition z1z3|z2z4 corresponds to the stratum
de�ned by the vanishing of the length of the loop around the points z1 and z3.
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Geometry Interior and boundary

Example

Figure:
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Geometry Interior and boundary

Codimension 1 strata for n = 5

A codimension 1 stratum is given by a loop around 2 points (a loop around 3
is the same as one around 2).

There are
(
5
2

)
= 10 codimension 1 strata.

strata 1∞|0z1z2 0∞|z1z21 01|z1z2∞ 0z1|z21∞ 0z2|z11∞
strata 1z1|z20∞ 1z2|∞0z1 ∞z1|z210 ∞z2|z110 z1z2|01∞

M0,5 = P1 × P1 \ seven lines.

M0,5 =
(
P1 × P1 \ {seven lines }

) ⋃
{ten lines}.
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Geometry Interior and boundary

Codimension 1 strata for n = 6

A loop can be around :

2 points (or 4 looking at the complement) and then
(
6
2

)
= 15 stratum,

or 3 points (other 3 other ...) so
(
6
3

)
· 1/2 = 10 other strata.

There are 25 strata.
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Geometry Interior and boundary

Tree of projective lines

Points on a codimension k stratum are k + 1 copy of P1 that intersect on the
double points.

The marked points are on the k + 1 P1 such that each P1 have at least 3
special points.

The marked points stay in the same P1 as one move in the stratum.

A stratum is then uniquely determined by a tree of projective lines
(intersection are the double points) together with n marked points on the
edge.
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Geometry Interior and boundary

Some examples :

Figure: Except for the case n = 6 (ii(, we have represented only maximal (n − 3)
codimension stratum (points).The case n = 6 (ii) is of codimension 2.
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Geometry Interior and boundary

Planar trees

This representation is dual to the former :

Special points are edges, double points being internal edges and marked
points being external one. Sphere (or the P1) are vertices.

Two edges share a vertices if and only if the corresponding points are on the
same sphere.
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Geometry Interior and boundary
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ζ(2) Description

The example of ζ(2)

As seen in the introduction, ζ(2) can be seen as an integral on M0,5.

Di�erential form
The fact that M0,5 ' {(t1, t2) ∈ (P1 \ {0, 1,∞})× (P1 \ {0, 1,∞}) |t1 6= t2}
gives us two coordinates on M0,5 that are t1 and t2. We then can de�ne a
meromorphic di�erential form on M0,5

ω2 =
dt1

1− t1
∧ dt2

t2
.

Integration domain
The identi�cation of M0,5 with (P1 \ {0, 1,∞})2 allows us to lift the 2 simplex
{0 < t1 < t2 < 1} in M0,5 and to look at its �algebraic� boundary. We will write
Φ5 for that simplex in M0,5.
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ζ(2) Boundary of M0,5

Boundary of M0,5 :

M0,5 = P1 × P1 \ seven lines :

0

0

1

1

Figure:

∂M0,5 is ten lines : the seven and 3 others that are the exceptional divisors
of the blow up at (0, 0), (1, 1), (∞,∞).

M0,5 =
(
P1 × P1 \ {7 lines}

) ⋃
{10 lines}.
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ζ(2) Singularities

Divisors of singularities

Let A be the divisor of the singularities of the di�erential form ω2

The divisor A is not the whole preimage of the singularities in P1 × P1

The exceptional divisors at (0, 0) and (1, 1) are not component of A.

Stratum of the boundary of M0,5 are divided in two categories:

5 components are the divisor A

5 other are the boundary B of Φ5.
divisor A of singularities ω 0z2|z11∞ 1z1|z20∞ ∞z1|z210 ∞z2|z110

01|z1z2∞
boundary B 0z1|z21∞ z1z2|01∞ 1z2|∞0z1 1∞|0z1z2

0∞|z1z21

() Gemometry of M0,n 19 / 38



ζ(2) Singularities

Some pictures

0

0

1

1

A

B

Figure:
Figure: Real points ofM0,5

In this example appears the question of controlling how singularities behave in
respect with blow up.
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Forgetful maps Coordinates and functions

Forgetful maps

Let n > 3 and S a �nite ordered set with |S | = n. We write M0,S for M0,|S|. Let
S ′ be a sub ordere set of S with |S ′| > 3. Then we have a canonical morphism,
forgetful map (with T = S \ S ′)

φT : M0,S →M0,S′

which delete the point indexed by elements of T and �smooth� the unstable
component.

Example with M0,5

The case T = {z2}: the stratum 0z1z2|1∞ is map to 0z1|1∞
The case T = {z2}: the stratum 0z2|z11∞ is map to M0,4
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Forgetful maps Coordinates and functions

Some pictures

In M0,6, S = {0, z1, z2, z3, 1,∞}, T = {z2} lets have a look to the component
de�ned by z2∞|0z1z31:

0

1

0

1

Stable curve.
delete z2

unstable curve

0

1

The �smoothing� or �contracting� is done

in putting the last label at the node place
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Forgetful maps Coordinates and functions

Coordinates, functions and di�erential forms

Choose a cross ratio on M0,4:
z̃1−z̃0
z̃1−z̃4

z̃3−z̃4
z̃3−z̃0

.

That is the same as identifying M0,4 with {z ∈ P1 \ {0, 1,∞} and the
stratum of M0,4, z̃0z̃1|z̃2z̃4, z̃2z̃1|z̃0z̃4, z̃4z̃1|z̃0z̃4 with respectively z = 0, 1
and ∞.

For M0,n we choose a system of representative:

M0,n+3 ' {(0, z1, . . . , zn, 1,∞) |zi 6= zj for i 6= j and ∀i zi 6= 0, 1,∞}.

We have coordinate functions ti such that ti (0, z1, . . . , zn, 1,∞) = zi . They
are the pull back of the standard a�ne coordinates on P1 = M0,4 by the
forgetful map φS = φT with S = {0, 1,∞, zj / j 6= i}.
We will write zi for this i-th coordinates (sometimes).
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Forgetful maps Product of forgetful map : M0,n+3 and (P1)
n

General situation

Choose two subsets S and S ′ of S0 = {z̃0, . . . , ˜zn+2} such that |S ∩ S ′| = 3 and
S0 = S ∪ S ′. Then we have a product of forgetful map φS × φS′

M0,S0 −→M0,S ×M0,S′

which is an isomorphism on the open spaces.
Let C be a codimension 1 stratum of M0,S0 .

If C is stable under both φS and φS′ then it is crashed done.

If C is stable under only one map, then usually the image of C is still a
codimension one stratum in the product.
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Forgetful maps Product of forgetful map : M0,n+3 and (P1)
n

The projection M0,n+3 → (P1)n

The projection p : M0,n+3 → (P1)n is an extension of the natural projection
M0,n+3 → (P1)n which send (0, z1, ..., zn, 1∞) to (z1, ..., zn).

Question
In the case n = 3 what is the image of the component given by 0z1z3|z21∞ ?

A geodesic surrounding 0, z1 and z3 have a length that tends to 0 when it
tends to the boundary.

Symbolically we have 0 = z1 = z3 which is the equation of a line in (P1)3.
The component 0z1z3|z21 maps to that line ...
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Forgetful maps Product of forgetful map : M0,n+3 and (P1)
n

Description

In order to obtain a description of the image of the boundary component, we say
that the points in the same subset of the partition are equals. More precisely

Components of types si sj |..., siε|... with ε ∈ {0, 1,∞}, give hyperplanes
xi = xj and xi = 0, 1,∞ ;

Partition of types {3 points}|... (with at most one being 0, 1,∞) give
codimension 2 a�ne space ;

...

Partitions of types εz1 . . . zn|ab (with ε = 0, 1,∞) give the points (0, ..., 0)
(1, ..., 1) and (∞, ...,∞).
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Forgetful maps Product of forgetful map : M0,n+3 and (P1)
n

Forgetful maps and (P1)n

The projection M0,S −→ (P1)n is the product of forgetful maps φS1 × · · ·φSn

with Si = {z̃0, z̃i , ˜zn+1, ˜zn+2}.
It is equivalent to the composition of maps

M0,n+3 −→M0,n+2 ×M0,4︸ ︷︷ ︸
fn

−→M0,n+1 ×M0,4 ×M0,4

−→ · · · −→ (M0,4)
n

The image of the component znσ1|σ201∞ (σ1 ∪ σ2 = {z1, . . . , zn−1}) is
crashed down (even if it is unstable on the second factor). It is a sort of
diagonal.

Example in M0,5

01|z1z2∞
1∞|0z1z2
0∞|z1z21

example in M0,6

1∞|0z1z2z3 7→ point

z1z2z3|01∞ 7→ line

01z3|z1z2∞ 7→ line
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Integration domain and di�erential forms Real points

Real points of M0,n+3(R) ([GM02][prop.2.1])

It is a connected closed real manifold.

Strati�cation leads to a cell decomposition.

Cells of it are in one-to-one correspondence with stable locally planar
(n + 3)-labeled trees.

The relation �a cell is a codimension one component of the boundary of
another cell� corresponds to the relation �a locally planar tree produces
another locally planar tree by contracting an internal edge.�

Any open cell is determined by an unoriented cyclic order on {0, . . . , n + 2}.
Once the order �xed, the choice of 3 points allows us to identify the open cell
with the simplex ∆n (via real coordinates).

The closure of each open cell has the structure of a Stashe� polytope.

Strata of codimension 1 of a cell are indexed by those stable 2-partitions of S
which are compatible with the respective cyclic order.
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Integration domain and di�erential forms Real points

Some comments

As said, tending to the boundary is the same as the length of a geodesic
tending to 0.

This geodesic intersects the equator in two points.

At the limit the equator has became two equators.

Staying in M0,n+3(R), the marked points are on the real equator and at the
limit, the partition is given by cutting the equator in two.

The partition keeps the order of the cell we were in.
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Integration domain and di�erential forms Real points

Example

n = 1. Boundary of the standard cell de�ned by 0 < z < 1 < ∞.
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Integration domain and di�erential forms Real points

Example

n = 2. Boundary of the standard cell de�ned by 0 < z1 < z2 < 1 < ∞
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Integration domain and di�erential forms Real points

Standard cell

We call standard cell Φn, the real open cell of M0,n+3(R) corresponding to the
cyclic order

0 < z1 < . . . < zn < 1 < ∞.

It is the preimage of ∆n = {0 < t1 < . . . < tn < 1} ⊂ P1(R)n induced by the map

M0,n+3 −→ (P1)n

(0, z1, . . . , zn, 1,∞) 7−→ (z1, . . . zn).
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Integration domain and di�erential forms MZV on M0,n+3

Di�erential forms associated and MZV

Let k = (k1, . . . , kp) be a p-tuple of integer (k1 > 2 and k1 + . . . + kp = n).
We associate to k the n-tuple

εk = (εn, . . . , ε1) = ( 0 . . . , 0︸ ︷︷ ︸
k1 times

, 1, . . . , 0 . . . , 0︸ ︷︷ ︸
kn times

, 1)

and the di�erential form in Ωlog (M0,n+3)

ωk =
dz1

z1 − ε1
∧ ... ∧ dzn

zn − εn
.
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Integration domain and di�erential forms MZV on M0,n+3

Distinguished 2 partitions

Let ε be an n-tuple of 0 and 1.

De�nition
1 Let α ∈ {0, 1,∞} we de�ne S(α, ε) by:

S(0, ε) = {zi with i such that εi = 0}
S(1, ε) = {zi with i such that εi = 1} S(∞, ε) = S(0, ε) ∪ S(1, ε.)

2 A 2 partition of {0, z1, . . . , zn, 1,∞} is of type α respecting ε if it is of the
form

αT |... with T ⊂ S(α, ε).
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Integration domain and di�erential forms MZV on M0,n+3

Main result

Proposition
The divisor of singularities of ωk in M0,n+3 is the union Ak of the divisor
corresponding to the stable 2-partition of some type α respecting εk.

Corollary
The divisor Ak does not intersect the boundary of Φn in M0,n+3(R).
We have the following equality∫

Φn

ωk = ζ(k1, . . . , kp).
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Integration domain and di�erential forms Schetch of proof

Two strategies and a key lemma

By induction looking maps at M0,n+3 −→M0,n+2 ×M0,4 and the Keel
description of those maps.

Looking at the projection M0,n+3 −→ (P1)n.

Lemma ([Gon02][lemma 3.8])
Let Y be a normal crossing divisor in a smooth variety X and ω ∈ Ωn

log (X \ Y ).

Let p : X̂ −→ X be the blow up of an irreducible variety Z . Suppose that the
generic point of Z is di�erent from the generic points of strata of Y . Then p∗ω
does not have a singularity at the special divisor of X̂ .
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Integration domain and di�erential forms Further developments

Further developments

1 Motivic multiple zeta values. If Bn is the Zariski closure of the boundary of
Φn, the multiple zeta values ζ(k1, . . . , kp) is a period of the motive :

Hn(M0,n+3 \ Ak;Bn \ (Ak ∩ Bn)).

2 F. Brown have shown that all the periods of MO,n+3 are rational linear
combination of MZV.

3 Q. Wang gives a similar expression of the multiple polylogarithms
Lik1,...,kp (z1, . . . , zn) on M0,n+3.
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Integration domain and di�erential forms Further developments
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