Geometry of moduli spaces of curves of genus 0 and multiple zeta values

Geometry of moduli spaces of curves

Definitions: different points of view Interior and boundary

The first non trivial example: $\zeta(2)$

Description Boundary of $\mathcal{M}_{0,5}$ Singularities

Forgetful maps

Coordinates and functions Product of forgetful map : $\mathcal{M}_{0,n+3}$ and $\left(\mathbb{P}^1\right)^n$

Integration domain and differential forms

Real points of $\overline{\mathcal{M}_{0,n+3}}$ Differential forms and MZV Schetch of proof Further developments

Complex analytic description

Definition

The moduli space of curves of genus 0 with n marked points $\mathcal{M}_{0,n}$ is the set of Riemann spheres with n marked points modulo isomorphisms of Riemann surfaces (analytic structure) sending marked points to marked points.

Remark

In the genus g case, the definition is the same but for *Riemann sphere* which is replaced by *Riemann surfaces of genus* g.

We can see that the moduli space of curves of genus 0 with n + 3 marked points is isomorphic to

$$\mathcal{M}_{0,n+3}=\{(z_0,\ldots,z_{n+2})\in\mathbb{P}^1(\mathbb{C}) \text{ such that } z_i
eq z_j\}/\operatorname{\mathsf{PSL}}_2(\mathbb{C}).$$

Examples

As $\mathsf{PSL}_2(\mathbb{C})$ is three transitive we can choose as representatives (modulo the action of $\mathsf{PSL}_2(\mathbb{C})$) the tuples $(0, t_1, t_2, \ldots, t_n, 1, \infty)$ setting

$$t_i = \frac{z_i - z_0}{z_i - z_{n+2}} \frac{z_{n+1} - z_{n+2}}{z_{n+1} - z_0}$$

This lead to the following identifications:

Example

- When n = 1 we have: $\mathcal{M}_{0,4} \simeq \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}.$
- When n = 2 we have:

 $\mathcal{M}_{0,5} \simeq (\mathbb{P}^1(\mathbb{C}) \backslash \{0,1,\infty\})^2 \backslash \{t_1 \neq t_2\}. \qquad \text{Figure: } \mathcal{M}_{0,5} \text{ in } \mathbb{P}^1(\mathbb{C})^2$

Remark

The previous identifications are depending on the choice of the cross-ratio, however

$$\mathcal{M}_{0,n+3}\simeq (\mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty\})^n\setminus\{ ext{fat diagonal}\}.$$

Metric description

A Riemann sphere with $n \ (n \ge 3)$ removed points is an hyperbolic surface.

 $\mathcal{M}_{0,n}$ can be seen as all the possible hyperbolic metrics on that Riemann sphere without *n* points modulo isomorphisms (isometries respecting the marked points).

Definition

A pant cut of an hyperbolic surface (genus 0) is the data of n-3 simple loops (that do not intersect) such that cutting along the loop leads to have pants.

The length of the loop of a pant cut is a geodesic of the metric and therefor an important element to characterize it.

Compactification

The open space $\mathcal{M}_{0,n}$ can be compactified in a meaningful way. Let $\overline{\mathcal{M}_{0,n}}$ denote this compactification. The space $\overline{\mathcal{M}_{0,n}}$ classifies the stable curves of genus 0.

Analytic point of view :

- In the genus 0 case, a point in a codimension 1 component of $\partial \overline{\mathcal{M}_{0,n}}$ is two spheres glue together, the *n* marked points being spread on the two spheres (the double points excluded) in such a way that, there are at least 2 marked points on each sphere.
- A point in a codimension k component will be k spheres glued together the marked points being spread on the sphere.
- The gluing points together with the marked one are called special points. The marked points are spread on the k sphere such that each sphere have at least 3 special points.

Compactification

Metric-codimension 1 stratum

When a point is moving toward the boundary of $\mathcal{M}_{0,n}$ the length of one of the loop of the "pant cut" tends to 0.

The stratum is uniquely determined by the choice of that loop.

A *codimension* k *component* is defined by the vanishing of the length of k loops of a "pant cut".

Algebraic description

Proposition (P. Deligne and D. Mumford ([DM69]))

The space $\overline{\mathcal{M}_{0,n}}$ is scheme over \mathbb{Z} . It is irreducible and its boundary is a normal crossing divisor.

Combinatorial description of the boundary of $\overline{\mathcal{M}_{0,n}}$

Stratification

A description of the boundary of $\overline{\mathcal{M}_{0,n}}$ is:

- The irreducible component of $\partial \overline{\mathcal{M}_{0,n}}$ is the product of some $\overline{\mathcal{M}_{0,k}}$ for $k \leq n$.
- Components of codimension 1 are of the the type $\overline{\mathcal{M}_{0,k}} \times \overline{\mathcal{M}_{0,n-k-1}}$.
- A codimension k component is the intersection of k component of codimension 1.

Espace de modules de courbes, groupes modulaires et th \tilde{A} ©orie des champs, Panorama et Synth \tilde{A} "se, no. 7, SMF, 1999.

Strata of codimension 1

• Moving in a codimensin 1 stratum makes move the marked points but they stay on the same sphere.

We have then an unordered partition $\sigma_1 | \sigma_2$ of the marked points $\{z_1, \ldots, z_n\}$.

- In the metric description of $\overline{\mathcal{M}_{0,n}}$: the stratum is determined by a loop around the points in σ_1 (or σ_2).
- Each codimension 1 stratum is uniquely determined by the corresponding unordered partition.

We represent each of these strata by a stable partition $\sigma_1 | \sigma_2$ of $\{z_1, \ldots, z_n\}$.

• For example in $\overline{\mathcal{M}_{0,4}}$ the partition $z_1 z_3 | z_2 z_4$ corresponds to the stratum defined by the vanishing of the length of the loop around the points z_1 and z_3 .

Example

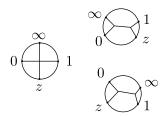


Figure:

Codimension 1 strata for n = 5

- A codimension 1 stratum is given by a loop around 2 points (a loop around 3 is the same as one around 2).
- There are $\binom{5}{2} = 10$ codimension 1 strata.

					$0z_2 z_1 1 \infty$
strata	$ 1z_1 z_20\infty$	$ 1z_2 \propto 0z_1$	$\infty z_1 z_2 10$	$\infty z_2 z_1 10$	$z_1 z_2 01\infty$

- $\mathcal{M}_{0,5} = \mathbb{P}^1 \times \mathbb{P}^1 \setminus \text{seven lines.}$
- $\overline{\mathcal{M}_{0,5}} = \left(\mathbb{P}^1 \times \mathbb{P}^1 \setminus \{\text{seven lines }\}\right) \bigcup \{\text{ten lines}\}.$

Codimension 1 strata for n = 6

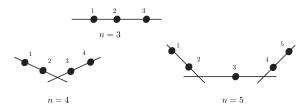
A loop can be around :

- 2 points (or 4 looking at the complement) and then $\binom{6}{2} = 15$ stratum,
- or 3 points (other 3 other ...) so $\binom{6}{3} \cdot 1/2 = 10$ other strata.
- There are 25 strata.

Tree of projective lines

- Points on a codimension k stratum are k + 1 copy of P¹ that intersect on the double points.
- The marked points are on the k + 1 P¹ such that each P¹ have at least 3 special points.
- ullet The marked points stay in the same \mathbb{P}^1 as one move in the stratum.
- A stratum is then uniquely determined by a tree of projective lines (intersection are the double points) together with *n* marked points on the edge.

Some examples :



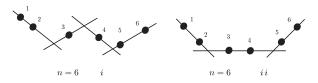
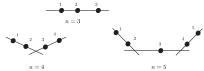


Figure: Except for the case n = 6 (*ii*(, we have represented only maximal (n - 3) codimension stratum (points). The case n = 6 (*ii*) is of codimension 2.

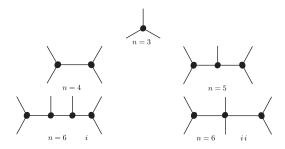
Planar trees

This representation is dual to the former :

- Special points are edges, double points being internal edges and marked points being external one. Sphere (or the \mathbb{P}^1) are vertices.
- Two edges share a vertices if and only if the corresponding points are on the same sphere.



Ì۵,



()

The example of $\zeta(2)$

As seen in the introduction, $\zeta(2)$ can be seen as an integral on $\overline{\mathcal{M}_{0,5}}$.

Differential form

The fact that $\mathcal{M}_{0,5} \simeq \{(t_1, t_2) \in (\mathbb{P}^1 \setminus \{0, 1, \infty\}) \times (\mathbb{P}^1 \setminus \{0, 1, \infty\}) | t_1 \neq t_2\}$ gives us two coordinates on $\mathcal{M}_{0,5}$ that are t_1 and t_2 . We then can define a meromorphic differential form on $\overline{\mathcal{M}_{0,5}}$

$$\omega_2 = \frac{dt_1}{1-t_1} \wedge \frac{dt_2}{t_2}.$$

Integration domain

The identification of $\mathcal{M}_{0,5}$ with $(\mathbb{P}^1 \setminus \{0, 1, \infty\})^2$ allows us to lift the 2 simplex $\{0 < t_1 < t_2 < 1\}$ in $\mathcal{M}_{0,5}$ and to look at its "algebraic" boundary. We will write Φ_5 for that *simplex* in $\mathcal{M}_{0,5}$.

Boundary of $\overline{\mathcal{M}_{0,5}}$:

• $\mathcal{M}_{0,5} = \mathbb{P}^1 \times \mathbb{P}^1 \setminus \text{seven lines}$:

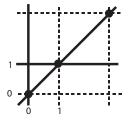


Figure:

∂M_{0,5} is ten lines : the seven and 3 others that are the exceptional divisors of the blow up at (0,0), (1,1), (∞,∞).

•
$$\overline{\mathcal{M}_{0,5}} = \left(\mathbb{P}^1 \times \mathbb{P}^1 \setminus \{7 \text{ lines}\}\right) \bigcup \{10 \text{ lines}\}.$$

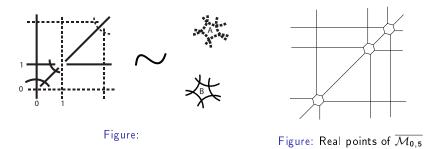
Divisors of singularities

Let A be the divisor of the singularities of the differential form ω_2

- The divisor A is not the whole preimage of the singularities in $\mathbb{P}^1 imes \mathbb{P}^1$
- The exceptional divisors at (0,0) and (1,1) are not component of A.
- Stratum of the boundary of $\overline{\mathcal{M}_{0,5}}$ are divided in two categories:
- 5 components are the divisor A
- 5 other are the boundary B of Φ_5 .

divisor A of singularities ω	$0z_2 z_1 1\infty$	$1z_1 z_2 0 \infty$	$\infty z_1 z_2 10$	$\infty z_2 z_1 10$
				$01 z_1z_2\infty$
boundary B	$0z_1 z_21\infty$	$z_1 z_2 01\infty$	$ 1z_2 \propto 0 z_1$	$1\infty 0z_1z_2 $
				$0\infty z_1z_21$

Some pictures



In this example appears the question of controlling how singularities behave in respect with blow up.

Forgetful maps

Let $n \ge 3$ and S a finite ordered set with |S| = n. We write $\overline{\mathcal{M}_{0,S}}$ for $\overline{\mathcal{M}_{0,|S|}}$. Let S' be a sub ordere set of S with $|S'| \ge 3$. Then we have a canonical morphism, forgetful map (with $T = S \setminus S'$)

$$\phi_T: \overline{\mathcal{M}_{0,S}} \to \overline{\mathcal{M}_{0,S'}}$$

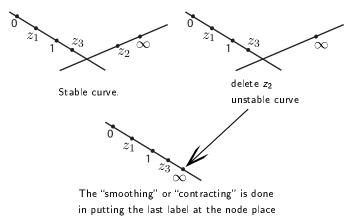
which delete the point indexed by elements of T and "smooth" the unstable component.

Example with $\mathcal{M}_{0,5}$

- The case $\mathcal{T}=\{z_2\}$: the stratum $0z_1z_2|1\infty$ is map to $0z_1|1\infty$
- The case $T = \{z_2\}$: the stratum $0z_2|z_11\infty$ is map to $\overline{\mathcal{M}_{0,4}}$

Some pictures

In $\overline{\mathcal{M}_{0,6}}$, $S = \{0, z_1, z_2, z_3, 1, \infty\}$, $T = \{z_2\}$ lets have a look to the component defined by $z_2 \infty |0z_1 z_3|$:



Coordinates, functions and differential forms

- Choose a cross ratio on $\overline{\mathcal{M}_{0,4}}$: $\frac{\tilde{z_1} \tilde{z_0}}{\tilde{z_1} \tilde{z_4}} \frac{\tilde{z_3} \tilde{z_4}}{\tilde{z_3} \tilde{z_0}}$.
- That is the same as identifying $\mathcal{M}_{0,4}$ with $\{z \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and the stratum of $\overline{\mathcal{M}_{0,4}}$, $\tilde{z_0}\tilde{z_1}|\tilde{z_2}\tilde{z_4}, \tilde{z_2}\tilde{z_1}|\tilde{z_0}\tilde{z_4}, \tilde{z_4}\tilde{z_1}|\tilde{z_0}\tilde{z_4}$ with respectively z = 0, 1 and ∞ .
- For $\overline{\mathcal{M}_{0,n}}$ we choose a system of representative:

$$\mathcal{M}_{0,n+3} \simeq \{(0,z_1,\ldots,z_n,1,\infty) \, | z_i \neq z_j \text{ for } i \neq j \text{ and } orall i z_i \neq 0,1,\infty\}.$$

- We have coordinate functions t_i such that $t_i(0, z_1, \ldots, z_n, 1, \infty) = z_i$. They are the pull back of the standard affine coordinates on $\mathbb{P}^1 = \overline{\mathcal{M}}_{0,4}$ by the forgetful map $\phi^S = \phi_T$ with $S = \{0, 1, \infty, z_j / j \neq i\}$.
- We will write *z_i* for this *i*-th coordinates (sometimes).

General situation

Choose two subsets S and S' of $S_0 = \{\tilde{z_0}, \ldots, \tilde{z_{n+2}}\}$ such that $|S \cap S'| = 3$ and $S_0 = S \cup S'$. Then we have a product of forgetful map $\phi^S \times \phi^{S'}$

$$\overline{\mathcal{M}_{0,S_{\boldsymbol{0}}}} \longrightarrow \overline{\mathcal{M}_{0,S}} \times \overline{\mathcal{M}_{0,S'}}$$

which is an isomorphism on the open spaces. Let C be a codimension 1 stratum of $\overline{\mathcal{M}_{0,S_0}}$.

- If C is stable under both ϕ^{S} and $\phi^{S'}$ then it is crashed done.
- If C is stable under only one map, then usually the image of C is still a codimension one stratum in the product.

The projection $\overline{\mathcal{M}_{0,n+3}} ightarrow (\mathbb{P}^1)^n$

The projection $p: \overline{\mathcal{M}_{0,n+3}} \to (\mathbb{P}^1)^n$ is an extension of the natural projection $\mathcal{M}_{0,n+3} \to (\mathbb{P}^1)^n$ which send $(0, z_1, ..., z_n, 1\infty)$ to $(z_1, ..., z_n)$.

Question

In the case n = 3 what is the image of the component given by $0z_1z_3|z_21\infty$?

- A geodesic surrounding $0, z_1$ and z_3 have a length that tends to 0 when it tends to the boundary.
- Symbolically we have $0 = z_1 = z_3$ which is the equation of a line in $(\mathbb{P}^1)^3$. The component $0z_1z_3|z_21$ maps to that line ...

Description

In order to obtain a description of the image of the boundary component, we say that the points in the same subset of the partition are equals. More precisely

- Components of types $s_i s_j | ..., s_i \varepsilon | ...$ with $\varepsilon \in \{0, 1, \infty\}$, give hyperplanes $x_i = x_j$ and $x_i = 0, 1, \infty$;
- \bullet Partition of types {3 points}|... (with at most one being 0,1, $\infty)$ give codimension 2 affine space ;

Ο ...

• Partitions of types $\varepsilon z_1 \dots z_n | ab$ (with $\varepsilon = 0, 1, \infty$) give the points $(0, \dots, 0)$ $(1, \dots, 1)$ and (∞, \dots, ∞) .

Forgetful maps and $(\mathbb{P}^1)^n$

- The projection $\overline{\mathcal{M}_{0,S}} \longrightarrow (\mathbb{P}^1)^n$ is the product of forgetful maps $\phi^{S_1} \times \cdots \phi^{S_n}$ with $S_i = \{\tilde{z_0}, \tilde{z_i}, \tilde{z_{n+1}}, \tilde{z_{n+2}}\}.$
- It is equivalent to the composition of maps

$$\underbrace{\overline{\mathcal{M}_{0,n+3}} \longrightarrow \overline{\mathcal{M}_{0,n+2} \times \overline{\mathcal{M}_{0,4}}}_{f_n} \longrightarrow \overline{\mathcal{M}_{0,n+1}} \times \overline{\mathcal{M}_{0,4}} \times \overline{\mathcal{M}_{0,4}}}_{\longrightarrow} \cdots \longrightarrow (\overline{\mathcal{M}_{0,4}})^n$$

The image of the component z_nσ₁|σ₂01∞ (σ₁ ∪ σ₂ = {z₁,..., z_{n-1}}) is crashed down (even if it is unstable on the second factor). It is a sort of diagonal.

Example in $\overline{\mathcal{M}_{0,5}}$ example in $\overline{\mathcal{M}_{0,6}}$

- $01|z_1z_2\infty$
- $1\infty|0z_1z_2$
- 0∞|z₁z₂1

- $1\infty|0z_1z_2z_3\mapsto \mathsf{point}$
- $z_1 z_2 z_3 | 01\infty \mapsto \text{line}$
- $01z_3|z_1z_2\infty\mapsto \mathsf{line}$

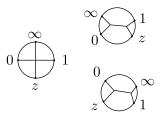
Real points of $\overline{\mathcal{M}_{0,n+3}}(\mathbb{R})$ ([GM02][prop.2.1])

- It is a connected closed real manifold.
- Stratification leads to a cell decomposition.
- Cells of it are in one-to-one correspondence with stable locally planar (n + 3)-labeled trees.
- The relation "a cell is a codimension one component of the boundary of another cell" corresponds to the relation "a locally planar tree produces another locally planar tree by contracting an internal edge."
- Any open cell is determined by an unoriented cyclic order on $\{0, \ldots, n+2\}$.
- Once the order fixed, the choice of 3 points allows us to identify the open cell with the simplex Δ_n (via real coordinates).
- The closure of each open cell has the structure of a Stasheff polytope.
- Strata of codimension 1 of a cell are indexed by those stable 2-partitions of S which are compatible with the respective cyclic order.

Some comments

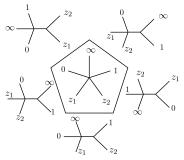
- As said, tending to the boundary is the same as the length of a geodesic tending to 0.
- This geodesic intersects the equator in two points.
- At the limit the equator has became two equators.
- Staying in $\overline{\mathcal{M}_{0,n+3}}(\mathbb{R})$, the marked points are on the real equator and at the limit, the partition is given by cutting the equator in two.
- The partition keeps the order of the cell we were in.

Example



n=1. Boundary of the standard cell defined by $0 < z < 1 < \infty.$

Example



n=2. Boundary of the standard cell defined by $0 < z_1 < z_2 < 1 < \infty$

Standard cell

We call standard cell Φ_n , the real open cell of $\mathcal{M}_{0,n+3}(\mathbb{R})$ corresponding to the cyclic order

$$0 < z_1 < \ldots < z_n < 1 < \infty.$$

It is the preimage of $\Delta_n = \{0 < t_1 < \ldots < t_n < 1\} \subset \mathbb{P}^1(\mathbb{R})^n$ induced by the map

$$\begin{array}{rccc} \mathcal{M}_{0,\,n+3} & \longrightarrow & (\mathbb{P}^1)^n \\ (0,\,z_1,\ldots,z_n,\,1,\infty) & \longmapsto & (z_1,\ldots z_n) \end{array}$$

Differential forms associated and MZV

Let $\mathbf{k} = (k_1, \dots, k_p)$ be a *p*-tuple of integer $(k_1 \ge 2 \text{ and } k_1 + \dots + k_p = n)$. We associate to \mathbf{k} the *n*-tuple

$$\varepsilon_{\mathbf{k}} = (\varepsilon_n, \dots, \varepsilon_1) = (\underbrace{0, \dots, 0}_{k_1 \text{ times}}, 1, \dots, \underbrace{0, \dots, 0}_{k_n \text{ times}}, 1)$$

and the differential form in $\Omega_{log}(\overline{\mathcal{M}_{0,n+3}})$

$$\omega_{\mathbf{k}} = \frac{dz_1}{z_1 - \varepsilon_1} \wedge \dots \wedge \frac{dz_n}{z_n - \varepsilon_n}$$

Distinguished 2 partitions

Let ε be an *n*-tuple of 0 and 1.

Definition

- Let $\alpha \in \{0, 1, \infty\}$ we define $S(\alpha, \varepsilon)$ by: $S(0, \varepsilon) = \{z_i \text{ with } i \text{ such that } \varepsilon_i = 0\}$ $S(1, \varepsilon) = \{z_i \text{ with } i \text{ such that } \varepsilon_i = 1\}$ $S(\infty, \varepsilon) = S(0, \varepsilon) \cup S(1, \varepsilon.)$
- Output A 2 partition of {0, z₁,..., z_n, 1, ∞} is of type α respecting ε if it is of the form

 $\alpha T | \dots$ with $T \subset S(\alpha, \varepsilon)$.

Main result

Proposition

The divisor of singularities of ω_k in $\overline{\mathcal{M}_{0,n+3}}$ is the union A_k of the divisor corresponding to the stable 2-partition of some type α respecting ε_k .

Corollary

The divisor A_k does not intersect the boundary of Φ_n in $\overline{\mathcal{M}_{0,n+3}}(\mathbb{R})$. We have the following equality

$$\int_{\Phi_n} \omega_{\mathbf{k}} = \zeta(k_1, \ldots, k_p).$$

Two strategies and a key lemma

- By induction looking maps at $\overline{\mathcal{M}_{0,n+3}} \longrightarrow \overline{\mathcal{M}_{0,n+2}} \times \overline{\mathcal{M}_{0,4}}$ and the Keel description of those maps.
- Looking at the projection $\overline{\mathcal{M}_{0,n+3}} \longrightarrow (\mathbb{P}^1)^n$.

Lemma ([Gon02][lemma 3.8])

Let Y be a normal crossing divisor in a smooth variety X and $\omega \in \Omega_{log}^n(X \setminus Y)$. Let $p: \widehat{X} \longrightarrow X$ be the blow up of an irreducible variety Z. Suppose that the generic point of Z is different from the generic points of strata of Y. Then $p^*\omega$ does not have a singularity at the special divisor of \widehat{X} .

Further developments

Motivic multiple zeta values. If B_n is the Zariski closure of the boundary of Φ_n, the multiple zeta values ζ(k₁,..., k_p) is a period of the motive :

$$\mathsf{H}^{n}(\overline{\mathcal{M}_{0,n+3}}\setminus A_{\mathbf{k}};B_{n}\setminus (A_{\mathbf{k}}\cap B_{n})).$$

- F. Brown have shown that all the periods of M_{0,n+3} are rational linear combination of MZV.
- Q. Wang gives a similar expression of the multiple polylogarithms $Li_{k_1,...,k_p}(z_1,...,z_n)$ on $\overline{\mathcal{M}_{0,n+3}}$.

- X. Buf, J. Fehrenbach, P. Lochak, and L. Schneps, *Espace de modules de courbes, groupes modulaires et théorie des champs*, Panorama et Synthèse, no. 7, SMF, 1999.
- Pierre Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Pub. Math. Institut des Hautes Etudes Scientifiques (1969), no. 36.
- A. B. Goncharov and Yu. | Manin, Multiple ζ-motives and moduli spaces *M*_{0,n}, e-print, www.arxiv.org/abs/math.AG/0204102, April 2002.
- A. B. Goncharov, *Period and mixed motives*, e-print, www.arxiv.org/abs/math.AG/0202154, May 2002.